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ABSTRACT 
 
Since the advent of laparoscopy, surgical technology has 
advanced on an exponential scale that has broadened the 
accessibility of the surgeon to the operative field with 
minimal incisions. Minimally Invasive Surgery (MIS) is 
carried out through natural body openings or small artificial 
incisions. It achieves its clinical goals with minimal 
inconvenience to patients, which results in reduced patient 
trauma, shortened hospitalisation, improved diagnostic 
accuracy and therapeutic outcome. With the introduction of 
robotic assisted MIS, the use of image guided surgical 
navigation is becoming increasingly popular, but it needs to 
handle non-rigid tissue deformation over the course of the 
procedure. In this paper, a probabilistic framework is 
presented that combines the strengths of different depth cues 
for tissue deformation recovery. The practicality of the 
technique is demonstrated using in vivo stereo laparoscopy 
data. Real-time intra-operative application of this technique 
has benefits for image based adaptive navigation and motion 
stabilisation in robotic assisted surgery. 
 
Index Terms— robotic assisted surgery, image guided 
intervention, tissue deformation recovery, intra-operative 
navigation, computational stereo, surface reconstruction, 
belief networks. 
 
 

1. INTRODUCTION 
 
With recent advances in robotic assisted Minimally Invasive 
Surgery (MIS), the use of pre- and intra-operative imaging 
guidance is becoming increasingly popular for more 
effective surgical navigation and imposing dynamic active 
constraints for improved safety and accuracy in performing 
delicate surgical tasks [1]. Image based surgical navigation 
normally involves pre-operatively acquired patient data, but 
organ deformation due to instrument-tissue interaction 
requires real-time, intra-operative adaptation of the 
anatomical model [2]. In this regard, the use of intra-
operative imaging is essential but it must be supplemented 
by 3D tissue deformation recovery of the operating field as 
current intra-operative imaging techniques (such as those 

provided by intra-operative ultrasound) are usually limited 
to selected imaging planes or volumes, often with a narrow 
field of view. Effective fusion of these data, coupled with 
the use of biomechanical modelling, facilitates the use of 
augmented reality for surgical visualisation and navigation, 
obviating the need of the surgeon to remove his/her eyes 
from the operating field to see beyond the exposed 
anatomical surface. The need for real-time intra-operative 
3D tissue deformation is also motivated by the recent 
development of robotic assisted MIS for providing adaptive 
motion stabilisation for complex micro-surgical tasks such 
as beating heart coronary vessel anastomosis [3, 4]. This 
permits certain complex surgical tasks to be performed 
under a static frame of reference. Active constraints based 
on patient specific 3D data with in situ, dynamic adjustment 
further enhances the accuracy and safety of the procedure, 
thus avoiding accidental instrument motion violation in 
safety critical anatomical regions in the presence of large 
tissue deformation. This permits tighter margins of error 
whilst allowing a greater degree of freedom.   

The purpose of this paper is to outline some of the major 
approaches to real-time tissue deformation recovery, and to 
introduce a Markov-Random Field (MRF) based Bayesian 
Network (BN) for combining depth cues from different 
depth recovery strategies in a probabilistic framework so as 
to achieve a more complete and accurate 3D deformation 
field.  
 

2. IN-VIVO 3D DEPTH RECOVERY TECHNIQUES 
 
In MIS procedures, surgeons have to rely on a narrow 2D 
camera view of the operating field and the perceptual cues 
that a surgeon uses to estimate depth include binocular 
disparity, convergence, linear perspective, elevation, 
shading, shadow and texture [5]. Exactly how humans 
acquire detailed knowledge of a 3D field from a 2D view 
has been the subject of study for many years. Because the 
majority of the cues involved are subtle and difficult to 
detect in the operative environment, it is not well understood 
how these cues are assimilated in MIS.  

The determination of tissue deformation can be achieved 
with a number of different approaches that involve motion 
sensors such as mechanically/optically based accelerometers 
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or marker based techniques that use suturing or projecting 
fiducals on the tissue surface. With the sophistication and 
miniaturisation in optical technologies, it has now become 
possible to seamlessly incorporate eye tracking capabilities 
into the surgical environment. It has been shown that eye 
gaze derived from binocular eye-tracking can be effectively 
used to recover 3D motion and deformation of the soft tissue 
during MIS [6, 7]. Since robotic assisted MIS typically 
involves a pair of miniaturized stereo cameras, detailed 3D 
motion and structure recovery from the stereo laparoscope 
with image registration has been proposed [8-10]. The major 
advantage of these methods is that they do not require 
additional modification to the existing MIS hardware, but 
computationally they introduce a more difficult machine 
vision problem of inferring dense 3D correspondence which 
is often ill-posed. Existing research has shown that sparse 
sets of well known feature correspondences can be used to 
enforce additional constraints, therefore significantly 
increases the accuracy and robustness of the technique. 
Furthermore, the integration of other visual cues such as 
shading, specular reflectance and their temporal 
characteristics in response to soft tissue deformation can 
further enhance the practical accuracy of the technique [11].  

These different approaches to 3D tissue deformation 
recovery, however, all have certain limitations. For example, 
shading based techniques tend to perform well in regions 
with uniform albedo, little texture and smooth local 
curvature [12, 13]. Most approaches are based on strong 
smoothness constraints or require the assumption that the 
tissue surface within the field-of-view is continuous. 
Computational stereo based approaches, on the other hand, 
are more robust in regions that have distinctive geometrical 
features or sufficient texture details. Although some of the 
computational stereo methods are capable of reconstructing 
dense depth maps without requiring additional feature 
correspondence pairs, there is still the prerequisite that 
surfaces possess sufficiently detailed textures for 3D 
reconstruction to be effective. This is problematic when 
dealing with homogenous soft tissue surfaces. Accurate and 
robust 3D reconstruction of soft tissue deformation therefore 
requires that these complementing techniques to be 
effectively combined to be practically useful. To this end, a 
probabilistic framework based on MRF-BN can be used.  

 
 

3. DEPTH FUSION WITH MRF-BN  
 

As soft tissue often has smooth continuous surface and 
seldom has shape depth variations, the surface structure can 
be represented by a MRF and the conditional probability of 
a point Ix,y can be formulated as: 
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 where ,x yA represents the Markov blanket and 
,x yA

I represents the neighbouring nodes, where xx , 
yy and ,, x yx y A . A Markov blanket can be defined as: 
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where 
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The MRF is designed to maintain spatial continuity across 
an image, while the depth of each surface point is inferred 
via a Bayesian Network by fusing the posterior probabilities 
in the MRF from different depth cues. A belief propagation 
scheme is devised that uses the evidence represented by the 
sparse stereo points to infer the depth of the surrounding 
surface patches, and the propagation iterates until the full 
surface is recovered [14]. 

To demonstrate how the MRF-BN works in practice, the 
proposed technique has been applied to a phantom and an in 
vivo video sequence captured using a daVinci surgical robot, 
as shown in Figure 1. Figure 2 illustrates the captured 
laparoscopic image and the corresponding surface 
reconstruction results. Figure 2(b) illustrates the surface 
reconstruction result using only the shading information. As 
shown in the result images, the estimated tissue surfaces 
conform well to the structure perceived from the image, 
except in the specular highlight areas. To minimise the effect 
of specularities, a colour based filtering approach is used to 
remove the specularities, shown in Figure 2(c), and a B-
Spline interpolation is used to recover the removed areas, 
shown in Figure 2(d).   

Figure 3 illustrates an example of a 3D reconstruction 
result using the computational stereo technique [9]. To 
facilitate the visualisation of the sparse surface, a small 
texture patch is shown at each feature point. It can be seen 
that the method can cope with a large range of disparities as 
the overall algorithm can be implemented in a hierarchical 
manner where an image pyramid of four levels is 
constructed for each image and Lucas-Kanade matching is 
used to refine the correspondences at each level. 

Although feature based stereo surface reconstruction can 
accurately estimate the 3D locations of distinctive feature 
points, they are not sufficient to reconstruct the entire 3D 
surface geometry. Figure 4 demonstrates the reconstructed 
tissue surface using the proposed MRF-BN method, and 
Figure 5 illustrates the result of applying the proposed 
technique to an in-vivo robotic assisted MIS sequence. It is 
evident from the figure that the proposed technique is able to 
reconstruct accurately the entire 3D surface, which is 
difficult to achieve by using individual depth cues.   
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Figure 1. Experimental setup for tissue deformation recovery by using the proposed algorithm. The stereo laparoscopic 
camera of the daVinci robotic system (1) was used to capture the motion of a phantom heart (2).   

 
(a) (b) (c) (d) 

Figure 2. The captured laparoscopic image from the phantom sequence (a) and the corresponding surface reconstruction 
result (b) based on the shading information. It also illustrates the effect of specular highlights of the tissue surface (as 
highlighted in blue) (c) and the B-Spline surface interpolation results (d). 

 
Figure 3. The 3D reconstructed result (in four different views) by using the sparse stereo method. Small texture patches are 
assigned to each reconstructed 3D point to improve visualisation and the locations of the cameras are highlighted in green and 
red. The grey squares (5mm apart) are used to indicate the depth of the surface with respect to the camera views.  

 
Figure 4 The surface reconstruction results by using the proposed MRF-BN technique.  
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 (a) (b) 

Figure 5 (a) An in-vivo laparoscopic sequence and (b) its corresponding surface reconstruction results.  

 

4. DISCUSSION AND CONCLUSIONS 
 
The complexity of the surgical environment implies that no 
single vision algorithm can handle the large tissue 
deformation involved in MIS. We have presented in this 
paper different approaches to real-time in situ tissue 
deformation recovery and the use of MRF-BN to combine 
different depth cues. A generalised formulation of this 
probabilistic framework will allow other vision models to be 
incorporated with a degree of flexibility that facilitates a 
trade off between speed, accuracy and robustness. Hence, 
tissue motion tracking systems can be tailored to specific 
intra-operative application according to the different 
requirements and practical constraints.  With the advent of 
reliable vision-based real-time and in situ in vivo techniques 
on 3D-deformation recovery, this allows the use of optical 
based techniques for achieving adaptive motion stabilisation, 
active constraints, and intra-operative image registration 
under large tissue deformation. One promising goal is to 
devise a semi-automated motion-stabilised surgical-
navigation system by fusing human-driven gaze contingent 
information with machine-interpreted visual cues, resulting 
in a level of accuracy and reliability superior to the fully 
automated counterpart, and without having to sacrifice real-
time capability.  
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